Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

[Ethylene-1,2-bis(diphenylphos-phine)- $\left.P, P^{\prime}\right]$ dinitratoplatinum(II) and cis-bis[(diphenylphosphinomethyl)diphenylphosphine oxide- $O, P]$ platinum(II) dinitrate dihydrate

Malcolm J. Arendse, Gordon K. Anderson and Nigam P. Rath*
Department of Chemistry, University of Missouri - St Louis, 8001 Natural Bridge
Road, St Louis, MO 63121, USA
Correspondence e-mail: nigam_rath@umsl.edu

Received 19 June 2000
Accepted 14 November 2000

In $\left[\mathrm{Pt}(\right.$ dppe $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$, where dppe is ethylene-1,2-bis(diphenylphosphine) $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)$, the Pt atom is coordinated by the two P atoms and by two O atoms of the two nitrate ions. The molecule has a distorted square-planar geometry, with one of the nitrate groups directed on each side of the plane. The cation in cis- $\left[\mathrm{Pt}(\mathrm{dppmO}-O, P)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where dppmO is bis(diphenylphosphinomethyl)diphenylphosphine oxide $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{OP}_{2}\right)$, comprises two five-membered chelate rings, each dppmO ligand being coordinated to platinum through one P atom and the O atom. The larger $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle of $102.25(4)^{\circ}$ is due to steric interactions between the two phenyl groups on each P atom.

Comment

The dinitratoplatinum(II) complexes $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{P}-\mathrm{P})\right][\mathrm{P}-\mathrm{P}$ is dppm, $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$, or dppe, $\left.\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right]$ are useful intermediates in the synthesis of a wide variety of diphos-phine-platinum complexes, since the weakly coordinated nitrates can be easily replaced by other ligands. They can be isolated or they may be generated in situ and used in further reactions without isolation (De Priest et al., 1997). We prepared [ethylene-1,2-bis(diphenylphosphine)- P, P^{\prime}]dinitratoplatinum(II), $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\right.$ (dppe)], (I), as a precursor to the corresponding ascorbate complex by the reaction of $\left[\mathrm{PtCl}_{2}\right.$ (dppe) $]$ with silver nitrate in acetone solution (Arendse et al., 1999). The only structure of a related platinum complex in the literature is that of cis- $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (Suzuki et al., 1993).

Mixed phosphine-phosphine oxide ligands have been prepared by the reaction of $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}$ with benzyl bromide, followed by aqueous NaOH (Abatjoglou \& Kapicek, 1981). Palladium and platinum complexes of the type $\left[M\left\{\mathrm{Ph}_{2}-\right.\right.$ $\left.\mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}-\mathrm{O}, P \mathrm{y}_{2}\right]^{2+}$ have been reported (Higgins et al.,
1987), although the dppmO ligand was reported to be formed in only low yield by the above method. The solid-state structure of $\left[\mathrm{Pd}(\mathrm{dppeO}-O, P)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ has been reported recently by Coyle et al. (1998). We obtained cis-[bis(diphenylphosphinomethyl)diphenylphosphine oxide- O, P]platinum(II) dinitrate dihydrate, cis- $\left[\mathrm{Pt}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{O}) \mathrm{PPh}_{2}\right\}_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (II), as an unexpected by-product of the reaction between $\left[\mathrm{PtCl}_{2}(\mathrm{dppm})\right]$ and silver nitrate in air.

(I)

(II)

The molecular structure of (I) is shown in Fig. 1. The coordination geometry around the Pt atom is distorted square planar, with $\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2, \mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 1, \mathrm{O} 4-\mathrm{Pt}-\mathrm{P} 2$ and $\mathrm{O} 1-$ $\mathrm{Pt}-\mathrm{O} 4$ angles of 85.85 (8), 90.82 (17), 98.15 (17) and 85.4 (2) ${ }^{\circ}$, respectively. The $\mathrm{Pt}-\mathrm{O}-\mathrm{N}$ angles are 113.5 (5) and $116.2(5)^{\circ}$, and the NO_{2} groups lie on opposite sides of the $\mathrm{PtO}_{2} \mathrm{P}_{2}$ plane. This feature was also observed in the structure of cis- $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (Suzuki et al., 1993). The $\mathrm{Pt}-\mathrm{P}$ distances of 2.215 (2) and 2.220 (2) \AA, and the $\mathrm{Pt}-\mathrm{O}$ distances of 2.111 (5) and 2.115 (5) \AA, are similar to the corresponding distances in cis- $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$.

The molecular structure of the cation in (II) is bidentate (Fig. 2), coordinating through one P atom and the O atom of the phosphine oxide to form two five-membered chelate rings. The $\mathrm{Pt}-\mathrm{O}$ distances are 2.089 (2) and 2.094 (2) \AA, and the $\mathrm{Pt}-\mathrm{P}$ distances are 2.2168 (10) and 2.2178 (10) A. These PtO and $\mathrm{Pt}-\mathrm{P}$ bond lengths are similar to the values of 2.108 (10) \AA and 2.213 (4) \AA, respectively, found in cis$\left.\left[\mathrm{Pt}_{\{ } \mathrm{Ph}_{2} \mathrm{PNHP}(\mathrm{O}) \mathrm{Ph}_{2}-O, P\right\}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \quad$ (Bhattacharyya et al., 1996). The cation in the latter complex is analogous to that in (II), since it is also composed of two five-membered chelate

Figure 1
A view of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.
rings. The $\mathrm{Ph}_{2} \mathrm{PNHP}(\mathrm{O}) \mathrm{Ph}_{2}$ ligand is also isoelectronic with dppmO. In the present case, the coordination geometry about the Pt atom is distorted square planar. The $\mathrm{O} 1-\mathrm{Pt}-\mathrm{O} 2, \mathrm{O} 2-$ $\mathrm{Pt}-\mathrm{P} 3, \mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 2$ and $\mathrm{P} 2-\mathrm{Pt}-\mathrm{P} 3$ angles are 87.54 (10), 86.10 (7), 84.09 (7) and $102.25(4)^{\circ}$, respectively, giving an angle sum of 359.98° around the metal. The larger $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle is due to the greater steric requirements of the phenyl groups on the two P atoms that lie cis to each other. The $\mathrm{P}-$ $\mathrm{Pt}-\mathrm{P}$ angle in (II) is larger than that of 98.5 (2) ${ }^{\circ}$ found in cis$\left[\mathrm{Pt}\left\{\mathrm{Ph}_{2} \mathrm{PNHP}(\mathrm{O}) \mathrm{Ph}_{2}-O, P\right\}_{2}\right]^{2+}$ (Bhattacharyya et al., 1996); it is closer to the values of 103.2 (1) and 103.72 (9) ${ }^{\circ}$ in the neutral complexes cis-[$\left.\mathrm{Pt}\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{O}) \mathrm{Ph}_{2}-O, P\right\}_{2}\right]$ (Bhattacharyya et al., 1996) and cis- $\left[\mathrm{Pt}\left\{\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C}(\mathrm{O})\left(\mathrm{CF}_{3}\right)_{2}-O, P\right\}_{2}\right]$ (Montgomery et al., 1987).

Figure 2
A view of the cation of (II) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.

Experimental

Compound (I) was synthesized from $\left[\mathrm{PtCl}_{2}\right.$ (dppe) $]$ (Anderson et al., 1983) by halide abstraction with silver nitrate. Silver nitrate (0.34 g , $2.0 \mathrm{mmol})$ in water (5 ml) was added to an acetone solution (40 ml) of $\left[\mathrm{PtCl}_{2}\right.$ (dppe) $)(0.66 \mathrm{~g}, 1.0 \mathrm{mmol})$. The mixture was stirred for 24 h in the dark at room temperature, and the precipitate of AgCl was collected by filtration through Celite. The filtrate was evaporated under reduced pressure and the products were obtained as a yellow powder (yield $0.40 \mathrm{~g}, 56 \%$). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation from a CDCl_{3} solution. Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$: C 43.51, H 3.35, N 3.91%; found: C 43.64, H 3.31, N $3.81 \% ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \mathrm{P} 33.0\left({ }^{1} \mathrm{~J}_{\mathrm{Pt}, \mathrm{P}}=\right.$ 3940 Hz). Compound (II) was prepared as follows: the reaction of $\left[\mathrm{PtCl}_{2}(\mathrm{dppm})\right](1.30 \mathrm{~g}, 2 \mathrm{mmol})$ with 2 equivalents of silver nitrate $(0.68 \mathrm{~g}, 4.0 \mathrm{mmol})$ in acetone $(100 \mathrm{ml})$ in the presence of air produced a 4:1 mixture of $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{dppm})\right]$ and $c i s-\left[\operatorname{Pt}(\mathrm{dppmO}-O, P)_{2}\right]^{2+}$, as determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy $\left[\delta 4.6\left(s,{ }^{1} J_{\mathrm{Pt}, \mathrm{P}}=3810 \mathrm{~Hz}\right), 67.0\right.$ (br)]. On standing, crystals of (II) suitable for X-ray diffraction analysis were obtained.

Compound (I)

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}\right]$
$D_{x}=1.820 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=717.50$
Monoclinic, $C c$
$a=10.4971$ (1) \AA
$b=15.5281$ (2) \AA
$c=16.3930$ (2) \AA
$\beta=101.51$ (1) ${ }^{\circ}$
$V=2618.36(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=2-26^{\circ}$
$\mu=5.53 \mathrm{~mm}^{-1}$
$T=223$ (2) K
Plate, colourless
$0.30 \times 0.20 \times 0.04 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: empirical (SADABS; Blessing, 1995) $T_{\text {min }}=0.28, T_{\text {max }}=0.80$
25459 measured reflections
2576 independent reflections (plus 2561 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.069$
$S=1.03$
5137 reflections
334 parameters
H -atom parameters constrained

> 4304 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.10$
> $\theta_{\max }=26^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-19 \rightarrow 19$
> $l=-20 \rightarrow 20$
> Intensity decay: $<2 \%$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0148 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=1.31 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=0.024(8)$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Pt}-\mathrm{O} 4$	$2.111(5)$	$\mathrm{O} 2-\mathrm{N} 1$	$1.227(8)$
$\mathrm{Pt}-\mathrm{O} 1$	$2.115(5)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.236(8)$
$\mathrm{Pt}-\mathrm{P} 1$	$2.215(2)$	$\mathrm{O} 4-\mathrm{N} 2$	$1.277(9)$
$\mathrm{Pt}-\mathrm{P} 2$	$2.220(2)$	$\mathrm{O} 5-\mathrm{N} 2$	$1.222(9)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.261(8)$	$\mathrm{O} 6-\mathrm{N} 2$	$1.194(9)$
$\mathrm{O} 4-\mathrm{Pt}-\mathrm{O} 1$	$85.4(2)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	$122.2(8)$
$\mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 1$	$90.82(17)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	$120.9(7)$
$\mathrm{O} 4-\mathrm{Pt}-\mathrm{P} 2$	$98.15(17)$	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 1$	$116.8(7)$
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2$	$85.85(8)$	$\mathrm{O} 6-\mathrm{N} 2-\mathrm{O} 5$	$121.6(9)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{Pt}$	$116.2(5)$	$\mathrm{O} 6-\mathrm{N} 2-\mathrm{O} 4$	$121.2(8)$
$\mathrm{N} 2-\mathrm{O} 4-\mathrm{Pt}$	$113.5(5)$	$\mathrm{O} 5-\mathrm{N} 2-\mathrm{O} 4$	$117.3(8)$

Compound (II)

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{OP}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1155.87$
Monoclinic, $P 2_{1} / n$
$a=12.9843$ (2) \AA
$b=16.3998$ (2) \AA
$c=22.6979$ (3) \AA
$\beta=92.81$ (1) ${ }^{\circ}$
$V=4827.47(11) \AA^{3}$
$Z=4$
$D_{x}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192
reflections
$\theta=2.2-26.4^{\circ}$
$\mu=3.10 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Irregular, light yellow
$0.36 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffract-
7985 reflections with $I>2 \sigma(I)$
ometer
φ and ω scans
Absorption correction: empirical (SADABS; Blessing, 1995)
$T_{\text {min }}=0.37, T_{\text {max }}=0.51$
80352 measured reflections 9898 independent reflections
$R_{\text {int }}=0.06$
$\theta_{\text {max }}=26.46^{\circ}$
$h=-16 \rightarrow 16$
$k=-20 \rightarrow 20$
$l=-28 \rightarrow 28$
Intensity decay: <2\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0237 P)^{2}\right.$ $+8.7121 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.59 \mathrm{e} \mathrm{A}^{-3}$
$S=1.09$
9898 reflections
604 parameters

H -atom parameters constrained

Table 2
Selected geometric parameters (\AA°) for (II).

$\mathrm{Pt}-\mathrm{O} 2$	$2.089(2)$	$\mathrm{P} 1-\mathrm{C} 1$	$1.804(4)$
$\mathrm{Pt}-\mathrm{O} 1$	$2.094(2)$	$\mathrm{P} 2-\mathrm{C} 1$	$1.837(4)$
$\mathrm{Pt}-\mathrm{P} 3$	$2.2168(10)$	$\mathrm{P} 4-\mathrm{O} 2$	$1.520(3)$
$\mathrm{Pt}-\mathrm{P} 2$	$2.2178(10)$	$\mathrm{P} 4-\mathrm{C} 2$	$1.806(4)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.525(3)$	$\mathrm{P} 3-\mathrm{C} 2$	$1.844(4)$
$\mathrm{O} 2-\mathrm{Pt}-\mathrm{O} 1$	$87.54(10)$	$\mathrm{P} 3-\mathrm{Pt}-\mathrm{P} 2$	$102.25(4)$
$\mathrm{O} 2-\mathrm{Pt}-\mathrm{P} 3$	$86.10(7)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1$	$106.89(16)$
$\mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 3$	$173.52(7)$	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{Pt}$	$101.45(13)$
$\mathrm{O} 2-\mathrm{Pt}-\mathrm{P} 2$	$171.61(7)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Pt}$	$121.61(14)$
$\mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 2$	$84.09(7)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2$	$106.00(19)$

H atoms were treated using appropriate riding models $(A F I X=m 3$ in SHELXTL-Plus; Sheldrick, 1999). For both compounds, C-H distances of 0.98 and $0.94 \AA$ were used for CH_{2} and $\mathrm{C}_{6} \mathrm{H}_{5}$ groups, respectively. In the case of the solvent water molecules in (II), the Hatom positions were located from difference Fourier maps and were refined riding on their O atoms. For all H atoms, $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$. In (I), the largest peak in the final difference map is $0.88 \AA$ from C19 and the deepest trough is $0.64 \AA$ from the Pt atom. In (II), the largest peak is $1.67 \AA$ from O6'.

For compounds (I) and (II), data collection: SMART (Bruker, 1999); cell refinement: SMART. For compound (I), data reduction: SHELXTL-Plus (Sheldrick, 1999); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). For compound (II), data reduction: SAINT (Bruker, 1999); program(s) used to solve structure:

SHELXTL-Plus (Sheldrick, 1999); program(s) used to refine structure: SHELXTL-Plus. For compounds (I) and (II), molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

This work was supported through a grant from the National Science Foundation (grant No. CHE-9508228) and a University of Missouri - St Louis Research Award. Thanks are expressed to the National Science Foundation for a grant to purchase the X-ray diffraction instrumentation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1556). Services for accessing these data are described at the back of the journal.

References

Abatjoglou, A. G. \& Kapicek, L. A. (1981). US Patent Appl. 293 145; (1983). Chem. Abstr. 98, 198452p.
Anderson, G. K., Davies, J. A. \& Shoeck, D. L. (1983). Inorg. Chim. Acta, 76, L251-252.
Arendse, M. J., Anderson, G. K. \& Rath, N. P. (1999). Inorg. Chem. 38, $5864-$ 5869.

Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B. \& Woollins, J. D. (1996). Inorg. Chem. 35, 3675-3682.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1999). SMART (Version 5.0) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Coyle, R. J., Slovokhotov, Y. L., Antipin, M. Y. \& Grushin, V. V. (1998). Polyhedron, 17, 3059-3070.
De Priest, J., Zheng, G. Y., Woods, C., Rillema, D. P., Mikirova, N. A. \& Zandler, M. E. (1997). Inorg. Chim. Acta, 264, 287-296.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higgins, S. J., Taylor, R. \& Shaw, B. L. J. (1987). Organomet. Chem. 325, 285292.

Montgomery, C. D., Payne, N. C. \& Willis, C. J. (1987). Inorg. Chem. 26, 519526.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL-Plus. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Suzuki, Y., Miyamoto, T. K. \& Ichida, H. (1993). Acta Cryst. C49, 1318-1320.

